Elliptic Curve Cryptography
                
                
                Ponente(s): Jose De Jesus Angel Angel
                                Una curva elíptica obtiene su nombre de el cálculo del área de una elípse.
Las curvas elípticas han tenido un importante papel en los últimos 100 años. 
Entre las más sonadas incursiones, es su protagonizmo en la demostración del 
último teorema de Fermat.
 Hace más de 35 años, en 1985, fueron 
propuestas por Neal Koblitz y Victor Miller, para ser usadas como una alternativa 
al sistema de criptografía pública más usado en ese momento, el RSA.
Su mayor atractivo  es usar claves mucho  más cortas que las de RSA (el criptosistema más usado) proporcionando la misma seguridad.
La forma de las primeras curvas elípticas se derivan del modelo  de Weierstrass.
Muchas formas más han sido propuestas desde entonces, en esta plática
hacemos un repaso de la mayoría de las curvas elípticas que han sido 
propuestas (Edwards curves, BN curves, NIST curves, Huff curves, Hessian curves, Koblitz curves,..) mencionando su estado actual y sus principales características.